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Color flow in high energy  
scattering processes



The theoretical description of high-energy scattering cross sections is based on 
factorization in, on the one hand, the perturbative scattering of partons, and on 
the other hand, the nonperturbative parton distributions

Factorization and color flow

Higgs production: pp→HX 

Color treatment is simple at high 
energies: separate traces, not 
dependent on kinematics 
 
But in the actual process there are 
no colored final states
and there are many soft gluons 
exchanged to balance the color

The cartoon version of the color flow works fine in most cases, when collinear 
factorization applies



Similarly, one would expect that the following two processes involve the same color 
trace and that the dynamics is unaffected by the color flow

Factorization in terms of correlators

However, this is not always the case, e.g. for certain differential cross sections, 
that are sensitive to the transverse momentum of the partons 

PP

hPhP

k

p p

k

∆

Φ

q

γ*p → h X (SIDIS) pp→ γ*X (Drell-Yan)

p p

k

Φ

P P

q

PP
Φ

k

A A

BB



summation of all gluon exchanges leads to 
path-ordered exponentials in the correlators

Gauge invariance of correlators
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The path C depends on whether the color interactions are with an incoming or 
outgoing color charge, yielding different paths for different processes

[Collins & Soper, 1983; Boer & Mulders, 2000; Brodsky, Hwang & Schmidt, 2002; Collins, 2002; 
Belitsky, Ji & Yuan, 2003; Boer, Mulders & Pijlman, 2003]
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The path C depends on whether the color interactions are with an incoming or 
outgoing color charge, yielding different paths for different processes
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This does not automatically imply that these gauge links affect observables, but 
it turns out that they do in certain cases sensitive to the transverse momentum

In that case the gauge link path has extent ξT in the transverse direction (ξT is 
conjugate to kT) which can be located at different places along the lightfront 



Gauge invariant definition of TMDs in semi-inclusive DIS contains a future 
pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, Ji & Yuan '03]

ξ
−

ξT

ξ
−

ξT

Process dependence of gauge links

PP

hPhP

k

p p

k

∆

Φ

q

γ*p → h X (SIDIS) pp→ γ*X (DY)

p p

k

Φ

P P

q

PP
Φ

k

A A

BB



Gauge invariant definition of TMDs in semi-inclusive DIS contains a future 
pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
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Process dependence of TMDs
for polarized protons



The quark correlator is parametrized in 
terms of transverse momentum dependent 
parton distributions (TMDs) 

Transverse Momentum of Partons
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Sivers TMD

The proper theoretical definition of the Sivers TMD is not unique
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Process dependence of Sivers TMDs

Time reversal invariance and parity relate the Sivers functions of SIDIS and DY
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FSI lead to a future pointing Wilson line (+ link), whereas ISI to past pointing (− link)

[Collins '02]
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In more complicated processes, more complicated gauge links appear, not 
necessarily related by just a number to the SIDIS Sivers TMD

But the first transverse moment is always just a number times the one of SIDIS



Sivers function on the lattice
By taking specific x and kT integrals one can define the “Sivers shift” <kT x ST>(n,bT): 
the average transverse momentum shift orthogonal to transverse spin ST  
[Boer, Gamberg, Musch, Prokudin, 2011]

This well-defined quantity can be evaluated on the lattice
[Musch, Hägler, Engelhardt, Negele & Schäfer, 2012]
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This is the first `first-principle’ demonstration that the Sivers function is nonzero 
for staple-like links. It clearly corroborates the sign change relation (as it should)
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Measurements of the Sivers TMD
The Sivers effect in SIDIS has been clearly observed by HERMES at DESY (PRL 2009) & 
COMPASS at CERN (PLB 2010)

The corresponding DY experiments are investigated at CERN (COMPASS), Fermilab 
(SeaQuest) & RHIC (W-boson production rather) & planned at NICA (Dubna) & IHEP 
(Protvino)

The first data is compatible with the sign-change prediction of the TMD formalism 

COMPASS, arXiv:1704.00488STAR, PRL 2016



Gluon Sivers effect
There is also a Sivers effect for gluons
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probes a gluon correlator with two + links e p" ! e0 QQ̄X

probes a gluon correlator with two - links p" p ! � �X

p" p ! � jetX probes a gluon correlator with a + and - link
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Opportunity for RHIC and EIC
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[Qiu, Schlegel, Vogelsang, 2011]

√s=500 GeV, pT𝛾 ≥1 GeV, integrated over 4 < Q2 < 30 GeV2, 0 ≤ qT ≤ 1 GeV 
At photon pair rapidity y < 3 gluon Sivers dominates and max(dσTU/dσUU) ~ 30-50%

Photon pair production

p↑p→𝛾𝛾X  
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f and d type gluon Sivers TMD

Related to antisymmetric (fabc) and symmetric (dabc) color structures

Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013

These processes probe 2 distinct, independent gluon Sivers functions 

Conclusion: gluon Sivers TMD studies at EIC and at RHIC (or AFTER@LHC) can 
be related or complementary, depending on the processes considered

D.B., Lorcé, Pisano & Zhou,  arXiv:1504.04332

e p" ! e0 QQ̄X �⇤ g ! QQ̄ probes [+,+]

p" p ! � jetX

In the kinematic regime where gluons in the polarized proton dominate, 
one effectively selects the subprocess: probes [+,-]g q ! � q



Photon-jet production
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Gluon Sivers effect at small x

backward hadron production

Selection of processes that probe the WW (f type) or DP (d type) Sivers gluon TMD:

DY SIDIS p" A ! hX p"A ! �(⇤) jetX p"p ! � �X ep" ! e0 QQX
p"p ! J/ �X ep" ! e0 j1 j2 X
p"p ! J/ J/ X

f? g [+,+]
1T (WW) ⇥ ⇥ ⇥ ⇥

p p

f? g [+,�]
1T (DP)

p p p p
⇥ ⇥

At small x the WW Sivers function appears to be suppressed by a factor of x 
compared to the unpolarized gluon function, unlike the DP one

At small x the [+,+] operator corresponds to what is called the Weizsäcker-Williams 
(WW) gluon operator and [+,−] operator to the dipole (DP) one 

For the Sivers function the first transverse moments of the WW and DP cases 
involve the antisymmetric (fabc) and symmetric (dabc) color structures
Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013



Dipole gluon Sivers function at small x

The DP-type Sivers function is not suppressed and can be probed in pA collisions
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Dipole gluon Sivers function at small x

The DP-type Sivers function is not suppressed and can be probed in pA collisions

D.B., Echevarria, Mulders, Jian Zhou, 2016
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The DP-type Sivers function is not suppressed and can be probed in pA collisions
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The imaginary part of the Wilson loop determines the gluonic single spin asymmetry 

It is the only relevant contribution in AN at negative xF, as opposed to the multiple 
contributions at positive xF 
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p↑p ➝ h± X at xF < 0 

BRAHMS, 2008   √s = 62.4 GeV
low pT, up to roughly 1.2 GeV 

where gg channel dominates

spin-dependent odderon is C-odd, 
whereas gg in the CS state is C-even 

expect smaller asymmetries 
in neutral pion and jet production

STAR, 2008
√s = 200 GeV
pT between 1 and 3.5 GeV



Factorization breaking
In general single hadron production in pp or pA is not a TMD process

From that perspective it is best to study imbalance observables, like 𝛾𝛾 production 
or 𝛾*-jet production that probe partonic transverse momenta (𝛾*-jet probes the 
DP gluon Sivers function but its TMD factorization has not been (dis)proven yet) 
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Sivers asymmetry for the produced jet or hadron pair, but factorization breaking 
prevents trustworthy predictions
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From that perspective it is best to study imbalance observables, like 𝛾𝛾 production 
or 𝛾*-jet production that probe partonic transverse momenta (𝛾*-jet probes the 
DP gluon Sivers function but its TMD factorization has not been (dis)proven yet) 

D.B. & Vogelsang 2004
Bacchetta et al., 2005

ẟ𝜙 = dijet imbalance angle

Asymmetric jet or hadron correlations in p↑p ➝ h1 h2 X is expected to exhibit a 
Sivers asymmetry for the produced jet or hadron pair, but factorization breaking 
prevents trustworthy predictions

When color flow is in too many directions: 
factorization breaking

[Collins & J. Qiu '07; Collins '07; Rogers & Mulders '10]

Magnitude of factorization 
breaking is unknown



Factorization breaking
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ẟ𝜙 = dijet imbalance angle

RHIC data on p↑p ➝ j1 j2 X consistent with zero at the 
few percent level
[STAR Collaboration, Abelev et al. PRL 2007]

[Bomhof, Mulders, Vogelsang, Yuan, PRD 2007]

Should be measured more precisely (incl. the color factor of the P⊥sinẟ𝜙 moment) 



Unpolarized protons



Quark TMDs
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Irrespective of whether one can isolate the function with an additional loop from 
experiment, one can study particular Mellin-Bessel moments of it on the lattice:  

This will give us information on how important the flux of Fμν through the loop is
and hence how important the process dependence effects are or can be

The dipole ([+,−]) gluon Sivers TMD at small-x is entirely determined by the loop

In this sense, the SSA at small-x is to QCD what the Aharonov-Bohm effect in 
the double-slit experiment is to QED 

[D.B., Buffing, Mulders, JHEP 2015]
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The gauge links are process dependent, affecting even the unpolarized gluon TMDs
as was first realized in a small-x context 

Dominguez, Marquet, Xiao, Yuan, 2011

Explains Kharzeev, Kovchegov & Tuchin’s “tale of two gluon distributions” (2003) 
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WW vs DP

Different processes probe one or the other or a mixture, so this can be tested
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distributions, which are generally different in magnitude and width:
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Dijet production in pA probes a combination of 6 distinct unpolarized gluon TMDs  
In the large Nc limit it probes a combination of DP and WW functions

Dijet production in pA generally suffers from factorization breaking contributions
Collins, Qiu, 2007; Rogers, Mulders, 2010
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Dijet production in pA probes a combination of 6 distinct unpolarized gluon TMDs  
In the large Nc limit it probes a combination of DP and WW functions

Dijet production in pA generally suffers from factorization breaking contributions
Collins, Qiu, 2007; Rogers, Mulders, 2010

Single color singlet (CS) J/ψ or ϒ production from two gluons is not allowed by the 
Landau-Yang theorem, while color octet (CO) production involves a more 
complicated link structure. C-even (pseudo-)scalar quarkonium production is easier
D.B., Pisano, 2012



In ϒ+ɣ production the color singlet contribution dominates and in J/ψ+ɣ production 
too for a specific range of invariant mass of the pair
Den Dunnen, Lansberg, Pisano, Schlegel, 2014

CS vs CO
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[Mulders, Rodrigues, 2001]

It requires nonzero transverse momentum:  TMD
an interference between 
±1 helicity gluon states

±1

±1

∓1

±1

h⊥ g
1

fg
1

±1 ∓1

±1 ∓1

h⊥ g
1



Linearly polarized gluons can exist in 
unpolarized hadrons

For                gluons prefer to be polarized along kT,  

with a cos 2φ distribution of linear polarization 
around it, where φ=∠(kT,εT) 

h? g
1 > 0

Gluon polarization inside unpolarized protons

[Mulders, Rodrigues, 2001]

It requires nonzero transverse momentum:  TMD
an interference between 
±1 helicity gluon states

±1

±1

∓1

±1

h⊥ g
1

fg
1

±1 ∓1

±1 ∓1

h⊥ g
1



Linearly polarized gluons can exist in 
unpolarized hadrons

For                gluons prefer to be polarized along kT,  

with a cos 2φ distribution of linear polarization 
around it, where φ=∠(kT,εT) 

h? g
1 > 0

Gluon polarization inside unpolarized protons

[Mulders, Rodrigues, 2001]

It requires nonzero transverse momentum:  TMD
an interference between 
±1 helicity gluon states

±1

±1

∓1

±1

h⊥ g
1

fg
1

±1 ∓1

±1 ∓1

h⊥ g
1

This TMD is kT-even, chiral-even and T-even:

�µ⌫
U (x,pT ) =

x

2

⇢
� g

µ⌫
T f

g
1 (x,p

2
T ) +

✓
p

µ
T p

⌫
T

M

2
p

+ g

µ⌫
T

p2
T

2M2
p

◆
h

? g
1 (x,p2

T )

�



Linearly polarized gluons can exist in 
unpolarized hadrons

For                gluons prefer to be polarized along kT,  

with a cos 2φ distribution of linear polarization 
around it, where φ=∠(kT,εT) 

h? g
1 > 0

Gluon polarization inside unpolarized protons

[Mulders, Rodrigues, 2001]

It requires nonzero transverse momentum:  TMD
an interference between 
±1 helicity gluon states

±1

±1

∓1

±1

h⊥ g
1

fg
1

±1 ∓1

±1 ∓1

h⊥ g
1

This TMD is kT-even, chiral-even and T-even:

�µ⌫
U (x,pT ) =

x

2

⇢
� g

µ⌫
T f

g
1 (x,p

2
T ) +

✓
p

µ
T p

⌫
T

M

2
p

+ g

µ⌫
T

p2
T

2M2
p

◆
h

? g
1 (x,p2

T )

�

For linearly polarized gluons also [+,+] = [-,-] and [+,-] = [-,+]
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Selection of processes that probe the WW or DP linearly polarized gluon TMD:

Higgs and 0±+ quarkonium production allows to measure the linear gluon polarization 
using the angular independent pT distribution

All other suggestions use angular modulations

EIC can probe the WW h1
⊥g, while RHIC/LHC can probe both the WW and DP one

Qiu, Schlegel, Vogelsang, 2011; Jian Zhou , 2016; D.B., Brodsky, Pisano, Mulders, 2011; D.B., Pisano, 2012; Sun, 
Xiao, Yuan, 2011; D.B., den Dunnen, Pisano, Schlegel, Vogelsang, 2012; den Dunnen, Lansberg, Piano, Schlegel, 2014
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inclusive hadron or 𝛾+jet production in pp or pA collisions 
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In the TMD formalism the DP h1
⊥g becomes maximal when x → 0

The small-x limit of the DP correlator in the TMD formalism: 

D.B., Cotogno, van Daal, Mulders, Signori, Zhou, 2016
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⊥g  is (moderately) suppressed for small transverse momenta:

The CGC can be 100% polarized, but its observable effects depend on the process  

The “kT-factorization" approach (CCFM) yields maximum polarization too (but no 
process dependence):
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TMD evolution suppresses this ratio with increasing energy
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2014



Sudakov suppression of linear gluon polarization 

D.B., Mulders, JianZhou, Ya-jin Zhou, 2017

Despite the maximal linear gluon polarization in pA→𝛾* jet X at small x, there is 
Sudakov suppression of the cos(2φ) asymmetry: ~5% asymmetry at RHIC



Conclusions



• p↑p or p↑A→ 𝛾* X (quark Sivers, Fermilab E1039 experiment √s~15GeV in 2017) 

• p↑p or p↑A→ 𝛾 𝛾 X (sign of f-type (WW) gluon Sivers, relevant for EIC)

• p↑p or p↑A→ 𝛾(*) jet X (d-type (DP) gluon Sivers function & factorization test)

• pA→ 𝛾(*) jet X (linear gluon polarization & Sudakov suppression test)

• pp → J/Ѱ	𝛾 X (the unpolarized WW gluon TMD)

“Must-do” experiments
Never done before yet:

Improved precision needed:

• p↑A→ h± X (backward region, d-type (DP) gluon Sivers, spin-dependent odderon) 

• p↑p→ W± X (sign change of quark Sivers)

• p↑p → jet jet X (1% level or better for color factor & factorization breaking test)

Processes have been considered before and most are part of RHIC Cold QCD 
plan, but several new scientific goals are added



Back-up slides





• All TMDs are process dependent, with observable and testable effects

• At small x the unpolarized WW and DP gluon TMDs both matter and there are 
  sufficient processes in ep and pp collisions to test the expectations

• Same applies to the linear polarization of gluons inside unpolarized hadrons:
  In pp collisions percent level effects, except in quarkonium production
  In ep collisions it could be much larger (10% or more) & its sign can be determined

• The CGC can be maximally polarized, although not all processes will be (fully)           
  sensitive to it

•  Two distinct gluon Sivers TMDs can be measured in p↑p and p↑A collisions
   (RHIC & AFTER@LHC), the WW-type allows for a sign-change test w.r.t. ep↑ (EIC)

• As x→0 only the DP gluon Sivers TMD remains, which then corresponds to the 
  spin-dependent odderon, a T-odd and C-odd single Wilson loop matrix element that 
  determines AN at negative xF

Conclusions



Size of the effect
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Amount of linear gluon polarization:

D.B., Den Dunnen, Pisano, Schlegel ’13

What matters is the small-b behavior of the Fourier transformed TMD:
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[Nadolsky, Balazs, Berger, C.-P. Yuan, 2007; Catani, Grazzini, 2010; P. Sun, B.-W. Xiao, F. Yuan, 2011] 

The linear polarization starts at order αs, leading to a suppression w.r.t. f1

Ratio of large-kT tails of h1
⊥ and f1 is large, does not mean large effects at large QT

(observables involve integrals over all partonic kT)

↵sP 0 ⌦ f1
↵sP ⌦ f1



How different can the two unpolarized gluon distributions be?
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Therefore, the two functions can have rather different shapes and magnitudes

The first transverse moment must coincide

WW vs DP

At small x the unpolarized WW and DP gluon TMDs both matter and there are 
sufficient processes in ep and pp collisions to test the expectations
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pp→ (π jet) X

[D’Alesio, Murgia, Pisano, 2011]

Percent level effects
at RHIC energies in:

60 y 


